If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2+1=4r
We move all terms to the left:
3r^2+1-(4r)=0
a = 3; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·3·1
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2}{2*3}=\frac{2}{6} =1/3 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2}{2*3}=\frac{6}{6} =1 $
| y=(5/4)-4 | | 3x-9=110 | | f(1)=2/3f(1-1)+4 | | |9x+7|=70 | | (x+2)=x2+6x+8 | | x+5/16=1/8+x-5/3= | | 0=-8(5/4)+b | | 5/x=3/2x+1 | | -13w-8=5 | | x=0.8+0.2(-18.4/3) | | 1/2t+1/4t=5 | | x=0.8+0.2(-18.4/30 | | 58-v=278 | | -6u-7=5 | | 4(0.6m+2.5)=2(2.5m+3.05 | | 408-c=116 | | 53+23s=283 | | ((X+1)/7)+((x+3)/3)=1 | | 26-u=9 | | 21/v=7 | | 59=15+4w | | 25=-16t^2+50t+6 | | 8=c/10+5 | | 12x+10=54–10x | | 13+7q=48 | | z(z*2+1)=9+z*3 | | 59=54+j/5 | | (9x+14)/(7x+18)=0 | | X(3x-8)=(3x+5)(x-4) | | 2x-(5x+7)=6x-25 | | 3y=-18.4 | | 25-5v=10 |