z(z*2+1)=9+z*3

Simple and best practice solution for z(z*2+1)=9+z*3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z(z*2+1)=9+z*3 equation:



z(z*2+1)=9+z*3
We move all terms to the left:
z(z*2+1)-(9+z*3)=0
We add all the numbers together, and all the variables
z(z*2+1)-(z*3+9)=0
We multiply parentheses
2z^2+z-(z*3+9)=0
We get rid of parentheses
2z^2+z-z*3-9=0
Wy multiply elements
2z^2+z-3z-9=0
We add all the numbers together, and all the variables
2z^2-2z-9=0
a = 2; b = -2; c = -9;
Δ = b2-4ac
Δ = -22-4·2·(-9)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{19}}{2*2}=\frac{2-2\sqrt{19}}{4} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{19}}{2*2}=\frac{2+2\sqrt{19}}{4} $

See similar equations:

| 59=54+j/5 | | (9x+14)/(7x+18)=0 | | X(3x-8)=(3x+5)(x-4) | | 2x-(5x+7)=6x-25 | | 3y=-18.4 | | 25-5v=10 | | 41=u/5+36 | | 8(0.8+0.2y)+2y=-12 | | y÷2=8 | | 10+10x=9x-36 | | 38-r=31 | | 15+50(1-p)=30+10+40p | | 10=22-3m | | 58-u=294 | | 45=34+u | | 64÷k=4 | | 2*w=20 | | (4x+1)-(x^2-5)=x | | 1+2+3+1000j=5 | | 2x+3-4(x+1)=3x+2 | | x3=133^1 | | 292=244-v | | 24m=73 | | 7+11n-6=7n+37-5n | | F=9(s-45)+70 | | -7.29(x-15.6)=-9 | | 7+w=2 | | 9v-7v=6 | | 16/e+5=3 | | x-4+6x+1=5x+2+2x-5 | | (X-12)/4=(x+3)/5 | | F=(s-45)+10 |

Equations solver categories