If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8272=x(x+48)
We move all terms to the left:
8272-(x(x+48))=0
We calculate terms in parentheses: -(x(x+48)), so:We get rid of parentheses
x(x+48)
We multiply parentheses
x^2+48x
Back to the equation:
-(x^2+48x)
-x^2-48x+8272=0
We add all the numbers together, and all the variables
-1x^2-48x+8272=0
a = -1; b = -48; c = +8272;
Δ = b2-4ac
Δ = -482-4·(-1)·8272
Δ = 35392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{35392}=\sqrt{64*553}=\sqrt{64}*\sqrt{553}=8\sqrt{553}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-8\sqrt{553}}{2*-1}=\frac{48-8\sqrt{553}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+8\sqrt{553}}{2*-1}=\frac{48+8\sqrt{553}}{-2} $
| 15=5/3(x+12) | | -38=4(v-5)-2v | | (-4)*x=320 | | (12x+20)/2=10x | | 19(x-1)=6×13 | | 5x-10=3+4x | | 0=w+13 | | -3(n+1)=5n+3-2n | | x+4.55=6.32 | | 43=10n+3 | | 6(3x+3)=7(x+16) | | 43=10n-+3 | | 20x^2-108x+36=0 | | 4x2=-24 | | 11x+24=5x+150 | | n+10=-3 | | -133=-13-15n | | 5/(2x-1)=2/(x+3) | | −3.5=x/4 | | 40+10(4y-8)-16(3y-5)=0 | | -4(x+8)=-10 | | -5n-17=-52 | | 63=13x | | -36x-6x=12-2x | | -4x(-2x)=54 | | p−5=9 | | 2(x+2)=3+(x-1) | | 2x+30=-2+4 | | 6y+7=-3y+16 | | 4e+3=19 | | 28-5=3(x+3 | | 2x/3+1=x/2-8 |