6(w-8)2w=-24

Simple and best practice solution for 6(w-8)2w=-24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6(w-8)2w=-24 equation:



6(w-8)2w=-24
We move all terms to the left:
6(w-8)2w-(-24)=0
We add all the numbers together, and all the variables
6(w-8)2w+24=0
We multiply parentheses
12w^2-96w+24=0
a = 12; b = -96; c = +24;
Δ = b2-4ac
Δ = -962-4·12·24
Δ = 8064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8064}=\sqrt{576*14}=\sqrt{576}*\sqrt{14}=24\sqrt{14}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-24\sqrt{14}}{2*12}=\frac{96-24\sqrt{14}}{24} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+24\sqrt{14}}{2*12}=\frac{96+24\sqrt{14}}{24} $

See similar equations:

| (3x+3)=(7x-5)+(2x+4) | | (3x+3)=(7x-5)+(2x4) | | 49^x+^4=7^18-^x | | (-15g-4)=(-7)3 | | (7x-5)=(3x+3)+(7x-5) | | 2n^2-5=-77 | | (11x-7)=(3x+17)+(3x+11) | | (3x+17)=(3x+11)+(11x-7) | | 7u+5(u-6)=-38 | | (7x+6)=(3x+14)+(2x+12) | | ¾x=½+⅔x | | (3x+14)=(2x+12)+(7x+6) | | ¾x=⅓+⅔x | | v+24=34 | | 39=47-u | | 24x+22=30 | | (2x+12)=(3x+17)+(10x-1) | | 5(v+3)-2v=21 | | 7x-18=6x-8 | | x-(x•.1)=1750 | | 2(-6x+1)=-94 | | 2(16x+1)=-94 | | 3/2(x-6)^2+9=63 | | -5(6x-1)=245 | | 7x-11+x-25=180 | | 3z=-4z+7z | | -10-10+2f=5f+10 | | -4(6x-9)=2(-12×+18) | | 51a-51=44a | | -4h-6=-4h+4 | | 3-2x+3-2x=180 | | 3x-3=34 |

Equations solver categories