If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-27y+34=0
a = 5; b = -27; c = +34;
Δ = b2-4ac
Δ = -272-4·5·34
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-7}{2*5}=\frac{20}{10} =2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+7}{2*5}=\frac{34}{10} =3+2/5 $
| 4(d-2)+5=3(2d-1)-2d | | 3x-5=185 | | Y+1-2(-3y-1)=3(y-5) | | 2x2+3x-132=2x+x2 | | 6n+21.2=44.8 | | 3-5x+2x=-30 | | 3x²+36x-39=0 | | -4n-27=-59 | | 7x+48=5(x+6) | | 132=4(5n+3) | | 11a+17=77 | | X^2+4x+4=169 | | b(b+17)=0. | | 32=-8w+6(w+4) | | 5n2+n-6=0 | | -x+2/7+3x+2/3=-x+6/14+5 | | 18.23+b=64.02 | | 12a+5=41 | | X=3y+99 | | 95=-4+9k | | 11/12=3/4g | | X^2+4x+4=168 | | y/25=26 | | 2r=208 | | 2r=162 | | X+3-3x-1/4=1 | | 20x=15x+15 | | 180=10h | | 7(v+2)=-2(7v-1)+6v | | 11g=473 | | n^2(n+1)=150 | | d14=17 |