2x2+3x-132=2x+x2

Simple and best practice solution for 2x2+3x-132=2x+x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x2+3x-132=2x+x2 equation:



2x^2+3x-132=2x+x2
We move all terms to the left:
2x^2+3x-132-(2x+x2)=0
We add all the numbers together, and all the variables
2x^2-(+2x+x^2)+3x-132=0
We get rid of parentheses
2x^2-x^2-2x+3x-132=0
We add all the numbers together, and all the variables
x^2+x-132=0
a = 1; b = 1; c = -132;
Δ = b2-4ac
Δ = 12-4·1·(-132)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-23}{2*1}=\frac{-24}{2} =-12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+23}{2*1}=\frac{22}{2} =11 $

See similar equations:

| 6n+21.2=44.8 | | 3-5x+2x=-30 | | 3x²+36x-39=0 | | -4n-27=-59 | | 7x+48=5(x+6) | | 132=4(5n+3) | | 11a+17=77 | | X^2+4x+4=169 | | b(b+17)=0. | | 32=-8w+6(w+4) | | 5n2+n-6=0 | | -x+2/7+3x+2/3=-x+6/14+5 | | 18.23+b=64.02 | | 12a+5=41 | | X=3y+99 | | 95=-4+9k | | 11/12=3/4g | | X^2+4x+4=168 | | y/25=26 | | 2r=208 | | 2r=162 | | X+3-3x-1/4=1 | | 20x=15x+15 | | 180=10h | | 7(v+2)=-2(7v-1)+6v | | 11g=473 | | n^2(n+1)=150 | | d14=17 | | 3r/5=36/15 | | 25j=575 | | 37.4-j=-12.5 | | -12=x•3 |

Equations solver categories