If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b(b+17)=0.
We multiply parentheses
b^2+17b=0
a = 1; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·1·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*1}=\frac{-34}{2} =-17 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*1}=\frac{0}{2} =0 $
| 32=-8w+6(w+4) | | 5n2+n-6=0 | | -x+2/7+3x+2/3=-x+6/14+5 | | 18.23+b=64.02 | | 12a+5=41 | | X=3y+99 | | 95=-4+9k | | 11/12=3/4g | | X^2+4x+4=168 | | y/25=26 | | 2r=208 | | 2r=162 | | X+3-3x-1/4=1 | | 20x=15x+15 | | 180=10h | | 7(v+2)=-2(7v-1)+6v | | 11g=473 | | n^2(n+1)=150 | | d14=17 | | 3r/5=36/15 | | 25j=575 | | 37.4-j=-12.5 | | -12=x•3 | | 22w=990 | | d-10=40 | | v/20=7/10 | | 13t=338 | | 34t−4 =1 | | 2z+z+5z=4 | | 2(2x+2)=6 | | m/11=25 | | (7+y)(5y-2)=0 |