x(29-x)+(26-x)=100

Simple and best practice solution for x(29-x)+(26-x)=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(29-x)+(26-x)=100 equation:



x(29-x)+(26-x)=100
We move all terms to the left:
x(29-x)+(26-x)-(100)=0
We add all the numbers together, and all the variables
x(-1x+29)+(-1x+26)-100=0
We multiply parentheses
-1x^2+29x+(-1x+26)-100=0
We get rid of parentheses
-1x^2+29x-1x+26-100=0
We add all the numbers together, and all the variables
-1x^2+28x-74=0
a = -1; b = 28; c = -74;
Δ = b2-4ac
Δ = 282-4·(-1)·(-74)
Δ = 488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{488}=\sqrt{4*122}=\sqrt{4}*\sqrt{122}=2\sqrt{122}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{122}}{2*-1}=\frac{-28-2\sqrt{122}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{122}}{2*-1}=\frac{-28+2\sqrt{122}}{-2} $

See similar equations:

| 2y+y=-11 | | (15000/x)*100=50 | | 13^2x-7=1 | | (1/x^2)+(1/x)+1=7/12 | | 7x10=31 | | 4/w=3 | | 10=4+x÷5 | | 7-2p=2 | | 2x-2-5x+15=-1 | | 7x^2+24x-12=0 | | 8x-3x=4x | | A(x)=(5x-1)(3x-2) | | 9–2x=–8–4x | | (3*(x*x)-4)/(3*x+1)=x+1 | | (3*(x*x)-4)/(3x+1)=x+1 | | (3*x*x-4)/(3x+1)=x+1 | | 9.81x^2+20x-80=0 | | 3x^2-4/3x+1=x+1 | | 2.1y+3=2.4y+2.4 | | 5x=8(x-1)+5 | | (x+5)2=(x-3)2+8x | | 2(x–3)+9=5x–6 | | 7-4(3x-1)+5=3x-(2x+1) | | 4(x-5)+4=0,5(6x+4)-2 | | 5x–7=8+2x–3 | | m2-2m+10=0 | | 4x^2=10=4x-7 | | a=15+4 | | 59=6x-13 | | 10x-6+3x=2x-8 | | --2/3(15x+3)=-3x-9 | | (3x-2)(x+4)+50=0 |

Equations solver categories