If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8w^2-2w-15=0
a = 8; b = -2; c = -15;
Δ = b2-4ac
Δ = -22-4·8·(-15)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-22}{2*8}=\frac{-20}{16} =-1+1/4 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+22}{2*8}=\frac{24}{16} =1+1/2 $
| 3/12x4/31=7/12 | | 0=10p^2-17 | | 3y2+7y=0 | | d2+10d+25=0 | | 4x+86=15x-2 | | 3z2-5z-28=0 | | -5c=(5/24) | | 14+5=-5x-6(13x+15)+5 | | 14+5=-5x-6(13x+15) | | h2-6h=0 | | -3x^2+x^2-8+4x-3x^2-2=0 | | (x/4.4)=-15.6 | | 2x^2*7x+26=0 | | 5q-32=8- | | (7x-1)(9x+8)=0 | | 5r2-8=32 | | (12+x)(10+x)=180 | | -8/7=-5/3v+7/2 | | 5r-8=32 | | 8r^2+20r=0 | | 2g2-14g=-20 | | (20y-11)+(4y+7)+(7y-7)=180 | | 3(33/11)-4y=30 | | 13x2+40=1 | | 7t-t2=0 | | 20y-11+4y+7+7y-7=180 | | 2(x+7)×=20 | | (3+2)2z=3Z(z+2) | | -3h+5=2h-5 | | -5x(3x-8)=130 | | 8+4w=-12 | | 3x-9=-12x |