If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-5z-28=0
a = 3; b = -5; c = -28;
Δ = b2-4ac
Δ = -52-4·3·(-28)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-19}{2*3}=\frac{-14}{6} =-2+1/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+19}{2*3}=\frac{24}{6} =4 $
| -5c=(5/24) | | 14+5=-5x-6(13x+15)+5 | | 14+5=-5x-6(13x+15) | | h2-6h=0 | | -3x^2+x^2-8+4x-3x^2-2=0 | | (x/4.4)=-15.6 | | 2x^2*7x+26=0 | | 5q-32=8- | | (7x-1)(9x+8)=0 | | 5r2-8=32 | | (12+x)(10+x)=180 | | -8/7=-5/3v+7/2 | | 5r-8=32 | | 8r^2+20r=0 | | 2g2-14g=-20 | | (20y-11)+(4y+7)+(7y-7)=180 | | 3(33/11)-4y=30 | | 13x2+40=1 | | 7t-t2=0 | | 20y-11+4y+7+7y-7=180 | | 2(x+7)×=20 | | (3+2)2z=3Z(z+2) | | -3h+5=2h-5 | | -5x(3x-8)=130 | | 8+4w=-12 | | 3x-9=-12x | | $5.6-s=7.1$ | | 6^(x+2)=17.2 | | 7x^2+10x-100=0 | | 2x=10=8 | | 31.2-p=65.1 | | 8x-3.8=-8x7.0 |