7x2+7x-6=8/9

Simple and best practice solution for 7x2+7x-6=8/9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x2+7x-6=8/9 equation:



7x^2+7x-6=8/9
We move all terms to the left:
7x^2+7x-6-(8/9)=0
We add all the numbers together, and all the variables
7x^2+7x-6-(+8/9)=0
We get rid of parentheses
7x^2+7x-6-8/9=0
We multiply all the terms by the denominator
7x^2*9+7x*9-8-6*9=0
We add all the numbers together, and all the variables
7x^2*9+7x*9-62=0
Wy multiply elements
63x^2+63x-62=0
a = 63; b = 63; c = -62;
Δ = b2-4ac
Δ = 632-4·63·(-62)
Δ = 19593
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19593}=\sqrt{9*2177}=\sqrt{9}*\sqrt{2177}=3\sqrt{2177}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-3\sqrt{2177}}{2*63}=\frac{-63-3\sqrt{2177}}{126} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+3\sqrt{2177}}{2*63}=\frac{-63+3\sqrt{2177}}{126} $

See similar equations:

| 2j–7=1 | | 3=-10/x-4/x^2 | | 2x2-8x+8=0 | | 3n+3n=0 | | 50=5/2y | | -40=7(-2r+2)-4r | | 6(1+7m)=-120 | | 15.1+7.3a=6.5a+5.72+2.26 | | r-8.7=-8.3 | | 6(17m)=-120 | | 8(3x+3)-((x+3)+(x+2))=0 | | (4/7)t-(1/14)t=t-(5/2) | | 3(x+11)+5x=8x-33 | | X2+3x-504=0 | | N+2n=35;n=11;2n=22 | | 3x+15=167,5 | | 5(y+2)-(y-1)=3 | | 17x=16+15x | | (2-x)^(2)+2-x-20=0 | | 3(n-12)=-57 | | 27x+(x-6*4)=193 | | 13x²+18x=35-8x²+4x | | 2(4r+6)=0.6666(12r+18) | | -(×+4)+5=4×+1-5r | | -7(1-7r)=-7r-7 | | N+n+1=35;n=17;n+1=16 | | -5x2+5x+10=10/11 | | 649-x=490 | | -4(6-3a)=5a+46 | | h3+ 13= 16 | | 7(-3x²-2x+5)=0 | | 8(2x-5)-(x+16)+5=0 |

Equations solver categories