-5x2+5x+10=10/11

Simple and best practice solution for -5x2+5x+10=10/11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5x2+5x+10=10/11 equation:



-5x^2+5x+10=10/11
We move all terms to the left:
-5x^2+5x+10-(10/11)=0
We add all the numbers together, and all the variables
-5x^2+5x+10-(+10/11)=0
We get rid of parentheses
-5x^2+5x+10-10/11=0
We multiply all the terms by the denominator
-5x^2*11+5x*11-10+10*11=0
We add all the numbers together, and all the variables
-5x^2*11+5x*11+100=0
Wy multiply elements
-55x^2+55x+100=0
a = -55; b = 55; c = +100;
Δ = b2-4ac
Δ = 552-4·(-55)·100
Δ = 25025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25025}=\sqrt{25*1001}=\sqrt{25}*\sqrt{1001}=5\sqrt{1001}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(55)-5\sqrt{1001}}{2*-55}=\frac{-55-5\sqrt{1001}}{-110} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(55)+5\sqrt{1001}}{2*-55}=\frac{-55+5\sqrt{1001}}{-110} $

See similar equations:

| 649-x=490 | | -4(6-3a)=5a+46 | | h3+ 13= 16 | | 7(-3x²-2x+5)=0 | | 8(2x-5)-(x+16)+5=0 | | X2+5x-486=0 | | 9x-4=5x+36 | | 128=8(1-3b) | | 3x^2-5x-14=0 | | 1/5(15b-7)=2b-9 | | 2(5-2x-5x)=19+5(2x+5) | | 5x2-6x+7=3/4 | | X2+5x-480=0 | | 11-2a=-7a+2 | | 7(3-5b)=21-5b | | 4(2x-40)=15 | | 1.1x+1.2-5.4=-54 | | Y=2x-12x+17 | | 3(n-2)=-57 | | -2.9x=35.09 | | 9(3x+7)-4(6x+7)-1=0 | | 1/4x+1/4=13 | | 4(2x+1)=8+4 | | 2(x+2)-(x+3)=0 | | N+n+1=35;n=18;n+1=19 | | v^2–15v=0 | | -16t+368=0 | | -3x=x+6 | | (8)5-4x=6+2x | | x+2+x+2-2x=40 | | 10-2a=-5a+9 | | 27x+(4x-6)=193 |

Equations solver categories