If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10x+9=0
a = 2; b = -10; c = +9;
Δ = b2-4ac
Δ = -102-4·2·9
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{7}}{2*2}=\frac{10-2\sqrt{7}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{7}}{2*2}=\frac{10+2\sqrt{7}}{4} $
| |-10+5y|=55 | | (7x-27)=(10x-6) | | 6x-3+9x-12=90 | | 7p+4=8(p+1) | | -2r+5r+7=0 | | 5/n=15/60 | | 16/4=2/x | | 7p+4=8p+1 | | (–13+18)(–5)=g | | 2j-14+12j=64 | | -0.6x-0.35+0.25x=-56 | | x+2.4=16.9 | | -2x2+12x+7=0 | | 4(–3−3)=k | | 4 ( –3 − 3)=k | | 6x+2-4x=48 | | 12x-14/8+6x-10/14=10x+156/56 | | -0.778x-0.13x+0.14x=-96 | | (x+10)+(x-1)+(x2)+(79)=360 | | H(-13)=-5x+7 | | 2/5(10x+13)=26 | | 37/2=y/4 | | 80s=10/7 | | 2x^2-16x^2-40x=0 | | 4(6x-14)+8(6x+4)=12(10x+18)+6 | | 8(b+1)+4=3(b2-8)-16 | | -4x2-10x-3=0 | | 465-z=231 | | 6x2+12x-21=0 | | 1/5m-12=-3 | | 16j=192 | | 20/d=4 |