If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2-10x-3=0
a = -4; b = -10; c = -3;
Δ = b2-4ac
Δ = -102-4·(-4)·(-3)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{13}}{2*-4}=\frac{10-2\sqrt{13}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{13}}{2*-4}=\frac{10+2\sqrt{13}}{-8} $
| 465-z=231 | | 6x2+12x-21=0 | | 1/5m-12=-3 | | 16j=192 | | 20/d=4 | | (2)/(x)-3=(1)/(2) | | 10b-25=45 | | 10k+28=98 | | 4x^2-36.25x+81=0 | | x+(2/3x)=30 | | 16j=182 | | 6x+7=-8x-13 | | N=3.64x12 | | 80-j=70 | | x^2+7.2=8.7 | | .4x=1.88 | | 88=7v+11 | | 5/11=a/44 | | 4n/3n=35 | | 70=4b+22 | | 16t²+8t+8=0 | | x+(x+2)+(x-3)=44 | | 2x+3+2x-7=180 | | 75=4k+15 | | 2x+3+2x-7=360 | | ⅓(x-2)= | | (6x-20)=(52) | | (6x-20)+(52)=180 | | 2(3y+11)=-16 | | w/2-4=-12 | | 3.2/4=4/5-y | | 47=7n-23 |