If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2+12x+7=0
a = -2; b = 12; c = +7;
Δ = b2-4ac
Δ = 122-4·(-2)·7
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-10\sqrt{2}}{2*-2}=\frac{-12-10\sqrt{2}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+10\sqrt{2}}{2*-2}=\frac{-12+10\sqrt{2}}{-4} $
| 4(–3−3)=k | | 4 ( –3 − 3)=k | | 6x+2-4x=48 | | 12x-14/8+6x-10/14=10x+156/56 | | -0.778x-0.13x+0.14x=-96 | | (x+10)+(x-1)+(x2)+(79)=360 | | H(-13)=-5x+7 | | 2/5(10x+13)=26 | | 37/2=y/4 | | 80s=10/7 | | 2x^2-16x^2-40x=0 | | 4(6x-14)+8(6x+4)=12(10x+18)+6 | | 8(b+1)+4=3(b2-8)-16 | | -4x2-10x-3=0 | | 465-z=231 | | 6x2+12x-21=0 | | 1/5m-12=-3 | | 16j=192 | | 20/d=4 | | (2)/(x)-3=(1)/(2) | | 10b-25=45 | | 10k+28=98 | | 4x^2-36.25x+81=0 | | x+(2/3x)=30 | | 16j=182 | | 6x+7=-8x-13 | | N=3.64x12 | | 80-j=70 | | x^2+7.2=8.7 | | .4x=1.88 | | 88=7v+11 | | 5/11=a/44 |