100=(4.9)(t*t)+2t

Simple and best practice solution for 100=(4.9)(t*t)+2t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=(4.9)(t*t)+2t equation:



100=(4.9)(t*t)+2t
We move all terms to the left:
100-((4.9)(t*t)+2t)=0
We add all the numbers together, and all the variables
-((4.9)(+t*t)+2t)+100=0
We multiply parentheses ..
-((+4.9t^2)+2t)+100=0
We calculate terms in parentheses: -((+4.9t^2)+2t), so:
(+4.9t^2)+2t
We get rid of parentheses
4.9t^2+2t
Back to the equation:
-(4.9t^2+2t)
We get rid of parentheses
-4.9t^2-2t+100=0
a = -4.9; b = -2; c = +100;
Δ = b2-4ac
Δ = -22-4·(-4.9)·100
Δ = 1964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1964}=\sqrt{4*491}=\sqrt{4}*\sqrt{491}=2\sqrt{491}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{491}}{2*-4.9}=\frac{2-2\sqrt{491}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{491}}{2*-4.9}=\frac{2+2\sqrt{491}}{-9.8} $

See similar equations:

| 4=13-k | | 1/2/x-8=48 | | 5/7(10x-7)=45 | | 5/7(10x-7)=465 | | (2x+33)=x | | x/1/2-8=48 | | -1+23x=1+22x | | 4a+21=49 | | -2x+3x=2(x+4)-(x+8) | | 1=y-14 | | 2/3x-1/7=1/6 | | 26-h=10 | | 5x(x+3)+4x-5=4-2x | | −5x+2=7(x+2) | | 12(x−2)=52x | | (3)10^t+11=147 | | 5z+8/5=2z-3/2 | | 2j–4=6 | | 15+m=7 | | 100=(4.9)t2+2t | | V^2=8v-16 | | 16t^2+3t=153 | | 19x-17-3x+72=-13+13x-83 | | (3x-1)(2x-5)=36x-29 | | -18(3n+7)=36 | | 153=16t^2+3t | | 100/t=4.9t+2 | | (8x3−9)3=5832 | | 2x=14-6x | | 7x+5+6x+20=180 | | 3x+7=-2x+10 | | 3=7(5+2v) |

Equations solver categories