5x(x+3)+4x-5=4-2x

Simple and best practice solution for 5x(x+3)+4x-5=4-2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(x+3)+4x-5=4-2x equation:



5x(x+3)+4x-5=4-2x
We move all terms to the left:
5x(x+3)+4x-5-(4-2x)=0
We add all the numbers together, and all the variables
5x(x+3)+4x-(-2x+4)-5=0
We add all the numbers together, and all the variables
4x+5x(x+3)-(-2x+4)-5=0
We multiply parentheses
5x^2+4x+15x-(-2x+4)-5=0
We get rid of parentheses
5x^2+4x+15x+2x-4-5=0
We add all the numbers together, and all the variables
5x^2+21x-9=0
a = 5; b = 21; c = -9;
Δ = b2-4ac
Δ = 212-4·5·(-9)
Δ = 621
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{621}=\sqrt{9*69}=\sqrt{9}*\sqrt{69}=3\sqrt{69}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{69}}{2*5}=\frac{-21-3\sqrt{69}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{69}}{2*5}=\frac{-21+3\sqrt{69}}{10} $

See similar equations:

| −5x+2=7(x+2) | | 12(x−2)=52x | | (3)10^t+11=147 | | 5z+8/5=2z-3/2 | | 2j–4=6 | | 15+m=7 | | 100=(4.9)t2+2t | | V^2=8v-16 | | 16t^2+3t=153 | | 19x-17-3x+72=-13+13x-83 | | (3x-1)(2x-5)=36x-29 | | -18(3n+7)=36 | | 153=16t^2+3t | | 100/t=4.9t+2 | | (8x3−9)3=5832 | | 2x=14-6x | | 7x+5+6x+20=180 | | 3x+7=-2x+10 | | 3=7(5+2v) | | 1/14+1/11=1/x | | 0.6w=18 | | 7x+8−3x=−6+10 | | -8x-10=3x+12 | | 6–x=11 | | 7x+8−3x=−6+10/ | | 5x+4+3x^2=0 | | 5x-8•(5+8)=15•4x | | 2x+15=x^2+36 | | 26.6=v+4,4 | | x/3=x/5+16 | | 56=1.6x | | -219+11x+3x=89 |

Equations solver categories