100/t=4.9t+2

Simple and best practice solution for 100/t=4.9t+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100/t=4.9t+2 equation:



100/t=4.9t+2
We move all terms to the left:
100/t-(4.9t+2)=0
Domain of the equation: t!=0
t∈R
We get rid of parentheses
100/t-4.9t-2=0
We multiply all the terms by the denominator
-(4.9t)*t-2*t+100=0
We add all the numbers together, and all the variables
-(+4.9t)*t-2*t+100=0
We add all the numbers together, and all the variables
-2t-(+4.9t)*t+100=0
We multiply parentheses
-4t^2-2t+100=0
a = -4; b = -2; c = +100;
Δ = b2-4ac
Δ = -22-4·(-4)·100
Δ = 1604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1604}=\sqrt{4*401}=\sqrt{4}*\sqrt{401}=2\sqrt{401}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{401}}{2*-4}=\frac{2-2\sqrt{401}}{-8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{401}}{2*-4}=\frac{2+2\sqrt{401}}{-8} $

See similar equations:

| (8x3−9)3=5832 | | 2x=14-6x | | 7x+5+6x+20=180 | | 3x+7=-2x+10 | | 3=7(5+2v) | | 1/14+1/11=1/x | | 0.6w=18 | | 7x+8−3x=−6+10 | | -8x-10=3x+12 | | 6–x=11 | | 7x+8−3x=−6+10/ | | 5x+4+3x^2=0 | | 5x-8•(5+8)=15•4x | | 2x+15=x^2+36 | | 26.6=v+4,4 | | x/3=x/5+16 | | 56=1.6x | | -219+11x+3x=89 | | 11/2+x=61/2 | | 6(2x+1)+3×=8(2x-3)-1 | | -72-10x+x=144 | | -450=90+6y | | -450=-210+12y | | 4200+x=100x | | 12x-5x-91=35 | | 2/x+1/2=5/6 | | 17-8=p | | 13-5y=88- | | -2x+8x-55=107 | | 11x-(5x+4)+14=4x | | 2/5=x/65 | | 2(x‒3)=‒12 |

Equations solver categories