If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=(4.9)t2+2t
We move all terms to the left:
100-((4.9)t2+2t)=0
We calculate terms in parentheses: -((4.9)t2+2t), so:We get rid of parentheses
(4.9)t2+2t
We add all the numbers together, and all the variables
2t+(4.9)t2
We multiply parentheses
4.9t^2+2t
Back to the equation:
-(4.9t^2+2t)
-4.9t^2-2t+100=0
a = -4.9; b = -2; c = +100;
Δ = b2-4ac
Δ = -22-4·(-4.9)·100
Δ = 1964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1964}=\sqrt{4*491}=\sqrt{4}*\sqrt{491}=2\sqrt{491}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{491}}{2*-4.9}=\frac{2-2\sqrt{491}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{491}}{2*-4.9}=\frac{2+2\sqrt{491}}{-9.8} $
| V^2=8v-16 | | 16t^2+3t=153 | | 19x-17-3x+72=-13+13x-83 | | (3x-1)(2x-5)=36x-29 | | -18(3n+7)=36 | | 153=16t^2+3t | | 100/t=4.9t+2 | | (8x3−9)3=5832 | | 2x=14-6x | | 7x+5+6x+20=180 | | 3x+7=-2x+10 | | 3=7(5+2v) | | 1/14+1/11=1/x | | 0.6w=18 | | 7x+8−3x=−6+10 | | -8x-10=3x+12 | | 6–x=11 | | 7x+8−3x=−6+10/ | | 5x+4+3x^2=0 | | 5x-8•(5+8)=15•4x | | 2x+15=x^2+36 | | 26.6=v+4,4 | | x/3=x/5+16 | | 56=1.6x | | -219+11x+3x=89 | | 11/2+x=61/2 | | 6(2x+1)+3×=8(2x-3)-1 | | -72-10x+x=144 | | -450=90+6y | | -450=-210+12y | | 4200+x=100x | | 12x-5x-91=35 |