(8/9)x-10/9=3

Simple and best practice solution for (8/9)x-10/9=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8/9)x-10/9=3 equation:



(8/9)x-10/9=3
We move all terms to the left:
(8/9)x-10/9-(3)=0
Domain of the equation: 9)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (8/9)x-3-10/9=0
We add all the numbers together, and all the variables
(+8/9)x-3-10/9=0
We multiply parentheses
8x^2-3-10/9=0
We multiply all the terms by the denominator
8x^2*9-10-3*9=0
We add all the numbers together, and all the variables
8x^2*9-37=0
Wy multiply elements
72x^2-37=0
a = 72; b = 0; c = -37;
Δ = b2-4ac
Δ = 02-4·72·(-37)
Δ = 10656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10656}=\sqrt{144*74}=\sqrt{144}*\sqrt{74}=12\sqrt{74}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{74}}{2*72}=\frac{0-12\sqrt{74}}{144} =-\frac{12\sqrt{74}}{144} =-\frac{\sqrt{74}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{74}}{2*72}=\frac{0+12\sqrt{74}}{144} =\frac{12\sqrt{74}}{144} =\frac{\sqrt{74}}{12} $

See similar equations:

| 2x-6=10x+2 | | 4|0.5x-2.5|=0 | | 4(x+3)=4(x+2) | | 2x+4x-7=0 | | -8f-5=19 | | 3y-8=-13 | | 2x+4x=3x+30 | | 6x−3(x+8)=9 | | 12m+15=-8m+15 | | 3y+1=7(y-1)+2 | | -9x+56=56 | | 32.50x+25=22.5x+50 | | x4-26=26 | | 0.35t=3.45-0.12t | | x​2​​-4x+4=0 | | 11=5+v | | q=(-5)/3=8 | | 4(x-2)+2x=20 | | 10+r=3r | | 3(2x-5)=35-(4x-20) | | 15x=8.5+25.5 | | 4(1-6n)-6n=-176 | | 4x(2x+1)=27+3(2x-5) | | a/6+5=13 | | -2(b+5)-6=10 | | 3x*2-5x+2=0 | | 5.39x10x10=5.39x10-2 | | 3-(b-1)-5b=2(b-3)+10 | | 2/3x+1/x=30 | | 3.8x-12.72=2.1 | | 180=5(-8a+3)+5 | | (2/5x)+(1/x)=35 |

Equations solver categories