4x(2x+1)=27+3(2x-5)

Simple and best practice solution for 4x(2x+1)=27+3(2x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x(2x+1)=27+3(2x-5) equation:



4x(2x+1)=27+3(2x-5)
We move all terms to the left:
4x(2x+1)-(27+3(2x-5))=0
We multiply parentheses
8x^2+4x-(27+3(2x-5))=0
We calculate terms in parentheses: -(27+3(2x-5)), so:
27+3(2x-5)
determiningTheFunctionDomain 3(2x-5)+27
We multiply parentheses
6x-15+27
We add all the numbers together, and all the variables
6x+12
Back to the equation:
-(6x+12)
We get rid of parentheses
8x^2+4x-6x-12=0
We add all the numbers together, and all the variables
8x^2-2x-12=0
a = 8; b = -2; c = -12;
Δ = b2-4ac
Δ = -22-4·8·(-12)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{97}}{2*8}=\frac{2-2\sqrt{97}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{97}}{2*8}=\frac{2+2\sqrt{97}}{16} $

See similar equations:

| a/6+5=13 | | -2(b+5)-6=10 | | 3x*2-5x+2=0 | | 5.39x10x10=5.39x10-2 | | 3-(b-1)-5b=2(b-3)+10 | | 2/3x+1/x=30 | | 3.8x-12.72=2.1 | | 180=5(-8a+3)+5 | | (2/5x)+(1/x)=35 | | 1=s/4-2 | | 5=2x+19/3 | | 84=3+3x | | 9(x−3)=−3(2x+4) | | 10(x–2)+18=-72 | | n-7+3=3 | | x–6=-7 | | -19=b+8 | | -2=x+3-2x | | 5z-2-2z-4=-7 | | m+2m-6-2m=48 | | 6=f-60/6 | | 7a+13=55 | | .2(2x-1)=3 | | 100=-10(p+5) | | 1/(4z-1/4)=2(z+1/6) | | -1(4q+8)+6q=12q-5/6(18q+6) | | (x-4)^2-11=0 | | 100=-10(p=5) | | 3/4y-10=2 | | -4=2/5m-2 | | 0.5(m+4)=30m-1 | | 11(-3-4x)-2=36 |

Equations solver categories