If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-24x+14=0
We add all the numbers together, and all the variables
x^2-24x+14=0
a = 1; b = -24; c = +14;
Δ = b2-4ac
Δ = -242-4·1·14
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{130}}{2*1}=\frac{24-2\sqrt{130}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{130}}{2*1}=\frac{24+2\sqrt{130}}{2} $
| -3c-13=-1 | | 7y+3(y-3)=5(y+1)-3 | | 6x+20=5x-7(-x+4) | | 11(2x)=220 | | 12p−7=6p+5 | | 1/r=15 | | 8.88=4.44x−7 | | 6x+20=5x-7(-x+4 | | 4(x-1)+3=2x+2(-1+x) | | 3.7-2.8x=2.46 | | 2x5-12x3+16x=0 | | 6+s=5 | | 7h-5h=22 | | 180=54+27+(w+41) | | -3(3x-2)+6=-9x+12 | | -1+10q=3q-8 | | 10y+18-4y=-5y+y-16 | | 8x-14+2x+11+180=360 | | 0.65p−5=0.35p | | 155x-10= | | 3x+5+9x-17+180=360 | | 3x+5+180=360 | | {b+7}{6}=-2 | | 6z+10=-10+2z | | 45=9-6y | | 13b-34=9b+22 | | 2x+12=-3x+2 | | 2x+12=-3+2 | | 5x-4/3x=22 | | 180=60+22+(124+z) | | -3(5t-3)+4t=8t-7 | | 40=15x-25 |