If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v2+4v-2=0
We add all the numbers together, and all the variables
v^2+4v-2=0
a = 1; b = 4; c = -2;
Δ = b2-4ac
Δ = 42-4·1·(-2)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{6}}{2*1}=\frac{-4-2\sqrt{6}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{6}}{2*1}=\frac{-4+2\sqrt{6}}{2} $
| 2(x+1)=-3(x-2( | | 32.5=v-9.0 | | V-7=8-3v | | 4/5x-10=6 | | 35x-7=7(5x+1) | | 42-7y=-3y-6 | | 2c-1=-31 | | 7w=-16/3 | | (3/2)x+(1/5)=(3/4) | | 7+3x=32 | | 7x+20=8x+15 | | 0.40x+15=14.6 | | 7w=-51/3 | | 4(3x-1)=2(6x-2) | | 15-5y=20 | | 20/4-8x=4x | | (2x+8)/(2x^2+21x+61)=-3 | | 5(r-2)=2(2+2r) | | Yx3=180 | | 16x^2–40x+25=0 | | 45/360=8/x | | s2+6s+1=0 | | 2p+2=-52 | | 3(3b+2)-12=2(3b-3) | | -2g=18 | | -4k+2(5k-6=-3k-39 | | 8=p+-1 | | x2+2x-11=0 | | 6+3x=4.5x+3 | | z+-19=-12 | | 3(3b+2)-12=2(3b-3 | | F(x)=3x^2+7x+3 |