If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p2+6p+-18=0
We add all the numbers together, and all the variables
p^2+6p=0
a = 1; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·1·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*1}=\frac{-12}{2} =-6 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*1}=\frac{0}{2} =0 $
| 2p+4=15 | | y/y+5=4/9 | | 0.08x+0.02=0.05x+0.2 | | 0.17x+0.42=0.11x | | 0.04x-0.12=0.08 | | 3-0.8x=1.2-0.6x | | 0.5x+0.7=3.2 | | 13-4y=29-4y | | 7/49=a/21 | | -0.1x+3/10=4=10 | | x+3/4=x-1/7 | | R(x)=7x-2 | | -5+3m=-7 | | -3(-4y+4)=-36 | | _3(-4y+4)=-36 | | 7-4r=5 | | -5+3m=7 | | 7w=3=w | | 5z-2=0 | | x/3-6=1+8x/5 | | x/3-8x/5=-6-(-1) | | -3+2n=-9 | | 20x-5-x=3x+3 | | 3x+42=2(3x+9)5 | | 4(2x-7)+3(1+5x)=8(2x-1) | | 2x^2+10x=2 | | 4(2x-7)=3(1+5x)=8(2x-1) | | 4x-1÷3-x=x+1÷5 | | x/3x+42=2(3x+9) | | 4(2x-7)=3(1=5x)=8(2x-1) | | -3=2n=9 | | 3(1+x)-2(2x-3)=4(x+3) |