If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h2+7h-1=0
We add all the numbers together, and all the variables
h^2+7h-1=0
a = 1; b = 7; c = -1;
Δ = b2-4ac
Δ = 72-4·1·(-1)
Δ = 53
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{53}}{2*1}=\frac{-7-\sqrt{53}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{53}}{2*1}=\frac{-7+\sqrt{53}}{2} $
| (2x-8)/6-(3x+1)/4=(9x-2)/8+(3x-19)/12 | | 7c=8c | | 2x-8)/6-(3x+1)/4=(9x-2)/8+(3x-19)/12 | | 2^x+32(2^-x)-12=0 | | 4.9n=49+n | | x(x-3)3x=(x+2)3+1 | | x(x-3)-3x=(x+2)3+1 | | -3.1(2x+5)=15.5 | | 2y-3=17.y= | | 2+2(x+1)=6x | | (x-5)(x+2)=3(4x-2)-(x-5)^2 | | 6–2x=3x | | 2x=2+27 | | 3.5x+7=130.5+10x | | 180=40+(x+20)+x | | (D^2-4D-3)y=0 | | 9x+8=10x=8x+10 | | 90=38+x+(x+2) | | 7x-5=13-5x | | 180=38+x+(x+2) | | 2x=1−2.8x | | 12-3*(x+2)=(x+2)*(1-3x) | | P(n,3)=30 | | .50x+1.8x=3.15 | | 8(3x-2)14x=2(4x-7)+15 | | 5x-8=2x/2 | | (2.5x)3=180 | | 10x-3+5x=4x+1 | | (1/3)^x-2=(1/3)^2 | | 21x–14=14x+35 | | 7x^2-10x=-3 | | P=2I+2q |