8(3x-2)14x=2(4x-7)+15

Simple and best practice solution for 8(3x-2)14x=2(4x-7)+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(3x-2)14x=2(4x-7)+15 equation:



8(3x-2)14x=2(4x-7)+15
We move all terms to the left:
8(3x-2)14x-(2(4x-7)+15)=0
We multiply parentheses
336x^2-224x-(2(4x-7)+15)=0
We calculate terms in parentheses: -(2(4x-7)+15), so:
2(4x-7)+15
We multiply parentheses
8x-14+15
We add all the numbers together, and all the variables
8x+1
Back to the equation:
-(8x+1)
We get rid of parentheses
336x^2-224x-8x-1=0
We add all the numbers together, and all the variables
336x^2-232x-1=0
a = 336; b = -232; c = -1;
Δ = b2-4ac
Δ = -2322-4·336·(-1)
Δ = 55168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{55168}=\sqrt{64*862}=\sqrt{64}*\sqrt{862}=8\sqrt{862}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-232)-8\sqrt{862}}{2*336}=\frac{232-8\sqrt{862}}{672} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-232)+8\sqrt{862}}{2*336}=\frac{232+8\sqrt{862}}{672} $

See similar equations:

| 5x-8=2x/2 | | (2.5x)3=180 | | 10x-3+5x=4x+1 | | (1/3)^x-2=(1/3)^2 | | 21x–14=14x+35 | | 7x^2-10x=-3 | | P=2I+2q | | 2x+5/6=7/x-6 | | 62x-3=6-2x+1x=-1x=0x=1x=4 | | 3(x-1)+4(3x+5)=39 | | 2n-3=4n-7 | | X²-7x+21=0 | | -x^2-2x-7=-6 | | 7x+-11=4x-40 | | 30v=30-2v | | 15m=2m | | –4q+6=–10−6q | | 4.5x+x=180 | | x+5=x-13= | | 15/x=5/17 | | (x)/(3)-14=-24 | | 15=01y | | 4a-20=12a | | F(x)=1/3X3-x2-15x+6S | | 7x=(2x+5) | | (y-9)=(y-9) | | 4x+15=13x+7=180 | | p=6(3)-5 | | (x+3)=4x-1 | | 1,04^n=15000 | | 8x-3(x+8)=6x-3 | | 1.04^n=15000 |

Equations solver categories