If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=2Y^2-8
We move all terms to the left:
-(2Y^2-8)=0
We get rid of parentheses
-2Y^2+8=0
a = -2; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-2)·8
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*-2}=\frac{-8}{-4} =+2 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*-2}=\frac{8}{-4} =-2 $
| 236=w-395 | | -3y-11=6y+7 | | 2(x+9)=9 | | 63+3x=x+13 | | 15+5.5m=79 | | 1/2(15+7b)=-b/4 | | 100+0.5m=40+0.6m | | r+273=824 | | 14x+4=5×+31 | | |x-4|+11=26 | | 80=7x9 | | 3(x+5)-(2x+3)=2 | | (3/10)x-4x+4/5=3/5 | | 4(6-7x)=-32 | | 63x+13=3x | | 8x+3=5x+17 | | 3(x+15)-(2x+3)=2 | | 4(k-2)-6=4k-(3k-2) | | 11r+r^2+24=0 | | 23z=−6 | | 2/3z=−6 | | 5(4+r)=1/2(40/10r | | 64x-48=6x-22 | | -8p-8=-13-8p | | n+(n+2)+(n+4)=-132 | | 4=n-31 | | −8x=136 | | 24=x/8+3 | | 14*y*y-2=490 | | 3.5-0.02x=1.8 | | 9x+39=4x+4 | | 10y-(2y-9)=65 |