If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+14X=45
We move all terms to the left:
X2+14X-(45)=0
We add all the numbers together, and all the variables
X^2+14X-45=0
a = 1; b = 14; c = -45;
Δ = b2-4ac
Δ = 142-4·1·(-45)
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{94}}{2*1}=\frac{-14-2\sqrt{94}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{94}}{2*1}=\frac{-14+2\sqrt{94}}{2} $
| 3(2c-4)=4(c+1) | | 2(6z-1)=5(z+3)-3 | | 5(2-3c)=6-14c | | 3(2t-1)=4t+7 | | 2(y+8)=8(y-1) | | 2+3(x-7)=x+5 | | 3(4y-2)=9y+15 | | 2(f+3)=f-9 | | 10x-14=35 | | 6(f+8)=9 | | 3(1-2x)=15 | | 3(7y+1)=45 | | 2(5t-11)=18 | | 7(2z+5)=42 | | 5(3z-11)=20 | | 7(c+9)=21 | | 3(5+6a)=24 | | 2(y-7)=18 | | 3(x-8)+20=-25 | | x*12/2=23 | | 4(6x-9)=-48 | | -3(x-8)=-16 | | 5+r=6+0.6r | | 10/8x=100 | | 25+1/7d=17 | | 13h+20=5 | | 3x+6=5x-9 | | 0.5x-6+2=1.25x+10-9.5 | | 2x√3=6 | | 0.5(x-12)+2=1.25x(x+8)-9.5 | | 2x-14+x+7x=3 | | 2x-14+x+7x=4 |