If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=(500-2V)V-1000+100V
We move all terms to the left:
-((500-2V)V-1000+100V)=0
We add all the numbers together, and all the variables
-((-2V+500)V-1000+100V)=0
We calculate terms in parentheses: -((-2V+500)V-1000+100V), so:We get rid of parentheses
(-2V+500)V-1000+100V
determiningTheFunctionDomain (-2V+500)V+100V-1000
We add all the numbers together, and all the variables
100V+(-2V+500)V-1000
We multiply parentheses
-2V^2+100V+500V-1000
We add all the numbers together, and all the variables
-2V^2+600V-1000
Back to the equation:
-(-2V^2+600V-1000)
2V^2-600V+1000=0
a = 2; b = -600; c = +1000;
Δ = b2-4ac
Δ = -6002-4·2·1000
Δ = 352000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352000}=\sqrt{6400*55}=\sqrt{6400}*\sqrt{55}=80\sqrt{55}$$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-600)-80\sqrt{55}}{2*2}=\frac{600-80\sqrt{55}}{4} $$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-600)+80\sqrt{55}}{2*2}=\frac{600+80\sqrt{55}}{4} $
| x+4=2x2x | | 7n-20=40+7 | | 25-3n=88 | | 3.8x-(-1-9.7x)=2.6=13.3 | | 7(x-1)=-9(x+2)+49 | | –5n–8–56n=–8 | | 51=3k | | 2b-8=6 | | 3(5x-4)-8=7x-12 | | F(x)=x^2/100 | | 8x-1=x+8 | | 2(n+4)+3(n-4)=11 | | 6(x-2)=-9(x+1)+48 | | 5x-4x²+3x=-1 | | 7x+2x+5=9 | | (9x2)+(25x)-(6)=0 | | 5x+3=-6x-2 | | -2=-4(3k-1)-3(1-5k) | | 9x+4x+3=6 | | 5(x-3)=14-2(7-2x) | | K(x)=1000+100x | | 7+3x=2x=2 | | 19=-(2b+3)-5(3b-1) | | 8.3×c=-163.51 | | -3(4b+5)-2(4b-4)=-47 | | -5x+4/3=3/8 | | -46=-3(2-5x)+2(5x+5) | | 14=a*8 | | 9d-18=81 | | -1y+13/49=-40 | | g+7=4g-3 | | 9w+16=7w+30 |