If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(V)=(21-2V)(29.7-2V)
We move all terms to the left:
(V)-((21-2V)(29.7-2V))=0
We add all the numbers together, and all the variables
V-((-2V+21)(-2V+29.7))=0
We multiply parentheses ..
-((+4V^2-59.4V-42V+623.7))+V=0
We calculate terms in parentheses: -((+4V^2-59.4V-42V+623.7)), so:We add all the numbers together, and all the variables
(+4V^2-59.4V-42V+623.7)
We get rid of parentheses
4V^2-59.4V-42V+623.7
We add all the numbers together, and all the variables
4V^2-101.4V+623.7
Back to the equation:
-(4V^2-101.4V+623.7)
V-(4V^2-101.4V+623.7)=0
We get rid of parentheses
-4V^2+V+101.4V-623.7=0
We add all the numbers together, and all the variables
-4V^2+102.4V-623.7=0
a = -4; b = 102.4; c = -623.7;
Δ = b2-4ac
Δ = 102.42-4·(-4)·(-623.7)
Δ = 506.56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(102.4)-\sqrt{506.56}}{2*-4}=\frac{-102.4-\sqrt{506.56}}{-8} $$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(102.4)+\sqrt{506.56}}{2*-4}=\frac{-102.4+\sqrt{506.56}}{-8} $
| 3k-18=3(k)-3(6) | | 5+4x=1+x+1 | | 10x-24=29 | | 8x94=238 | | 5x-6=-x+3= | | 3(n-5)=3(1-3n) | | 3h+7-h=2(h+4) | | (2x)+9=90 | | H=16t^2+184t | | 1/2(4x+2)=17 | | 5y-18=4y+16 | | 20+2(t-10)+7=9t+11-7t-4 | | 12x-5x+170=12x-90 | | -3n(n-5)=3(1-3n) | | X^2-2x+3=83 | | (6+x)=3=12 | | 11x-25-5x-5=42 | | 4x+7=15x | | 20=17+x | | -8(-7x-2)=2x+16 | | 6g-17=19 | | 3m=–18 | | x=6x±2 | | 15x-25+5=10(x+2) | | 7/r=7/2 | | 2(y-5)-1=-5(-3y+5)-5y | | 4(4+3n)=-8+4n | | 2v/17=8 | | 5y-18=3y+34 | | -2x+20=3x+60 | | 2(s-89)=-56 | | 15x-25+5=10(x+2 |