F(4)=x2+1

Simple and best practice solution for F(4)=x2+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(4)=x2+1 equation:



(4)=F2+1
We move all terms to the left:
(4)-(F2+1)=0
We add all the numbers together, and all the variables
-(+F^2+1)+4=0
We get rid of parentheses
-F^2-1+4=0
We add all the numbers together, and all the variables
-1F^2+3=0
a = -1; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-1)·3
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*-1}=\frac{0-2\sqrt{3}}{-2} =-\frac{2\sqrt{3}}{-2} =-\frac{\sqrt{3}}{-1} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*-1}=\frac{0+2\sqrt{3}}{-2} =\frac{2\sqrt{3}}{-2} =\frac{\sqrt{3}}{-1} $

See similar equations:

| |3x-7|=19 | | 12b+8=2b+18 | | 5=(2b+6) | | D=r+ | | 8x-61=8x-61 | | 8x-61+8x-61=180 | | 25v2–40v+16=0 | | -11v-9=2 | | X2+y2=81 | | 3|x–5|-2=-20 | | f(4)=-21 | | 2c-2-7=1 | | 2/5(5k+35)=20 | | 3x-5(x-4)=-9+5x=27 | | A(x)=x(60-2x) | | 2−16x=56x+6 | | (6x-4)(7x+1)=0 | | X(6-2y)=3y-1 | | y=8-4(-2)/2 | | 3^2x+1•3^x=243 | | 3/8=c/20 | | 2.4x-5.9=-15.3 | | 15/x+5=50 | | 180=x^2+2x+100 | | 8x+22=10x-25 | | 6x−6=6 | | -6x-60=30 | | 187=11x/5 | | -2w-5=3 | | c=1/2(c-4)-(5+c) | | X+.2x=530 | | 125x-75x+47,750=50,000-200x |

Equations solver categories