A=(5x+4)+(5x+4)(2x-7)

Simple and best practice solution for A=(5x+4)+(5x+4)(2x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A=(5x+4)+(5x+4)(2x-7) equation:



=(5A+4)+(5A+4)(2A-7)
We move all terms to the left:
-((5A+4)+(5A+4)(2A-7))=0
We multiply parentheses ..
-((5A+4)+(+10A^2-35A+8A-28))=0
We calculate terms in parentheses: -((5A+4)+(+10A^2-35A+8A-28)), so:
(5A+4)+(+10A^2-35A+8A-28)
determiningTheFunctionDomain (+10A^2-35A+8A-28)+(5A+4)
We get rid of parentheses
10A^2-35A+8A+5A-28+4
We add all the numbers together, and all the variables
10A^2-22A-24
Back to the equation:
-(10A^2-22A-24)
We get rid of parentheses
-10A^2+22A+24=0
a = -10; b = 22; c = +24;
Δ = b2-4ac
Δ = 222-4·(-10)·24
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1444}=38$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-38}{2*-10}=\frac{-60}{-20} =+3 $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+38}{2*-10}=\frac{16}{-20} =-4/5 $

See similar equations:

| 20-k=16 | | 9x+40=3x^2 | | 27x+12=3 | | x4=48 | | 0=3x^2-30x+63 | | 11y=12y | | 3n/4+3=18 | | 6x-17=8x-4 | | c5+1.00=14.00 | | 5c+1.00=14.00 | | 2(x/2-4)=8 | | 4x+9=29-x | | 50x=200+100x | | -x+12=2x+6 | | X2+6x+55=0 | | 3x1/5x+2/15=1/3+x | | X2-6x-55=0 | | 6m+10=50 | | X2-6x+55=0 | | 3x2-16x-187=0 | | X2-2x-240=0 | | 3x15=20-2x | | X2+2x+24=0 | | 3x+6=0=2 | | X2+8x-240=0 | | X2-8x+240=0 | | (3-x)*(3+x)=x*(4-x) | | 4/8(x+2/2)+2/2(x-1/2)-2/2x=8/4 | | 8(4x+x)=64 | | 1,234/x=34 | | 4/8(x+2/2)+(2/2(x-1/2)-2/2x=8/4 | | (3-x)*(x+3)=x*(4-x) |

Equations solver categories