If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x(5x-2)-x=8+(4-2x)
We move all terms to the left:
9x(5x-2)-x-(8+(4-2x))=0
We add all the numbers together, and all the variables
9x(5x-2)-x-(8+(-2x+4))=0
We add all the numbers together, and all the variables
-1x+9x(5x-2)-(8+(-2x+4))=0
We multiply parentheses
45x^2-1x-18x-(8+(-2x+4))=0
We calculate terms in parentheses: -(8+(-2x+4)), so:We add all the numbers together, and all the variables
8+(-2x+4)
determiningTheFunctionDomain (-2x+4)+8
We get rid of parentheses
-2x+4+8
We add all the numbers together, and all the variables
-2x+12
Back to the equation:
-(-2x+12)
45x^2-19x-(-2x+12)=0
We get rid of parentheses
45x^2-19x+2x-12=0
We add all the numbers together, and all the variables
45x^2-17x-12=0
a = 45; b = -17; c = -12;
Δ = b2-4ac
Δ = -172-4·45·(-12)
Δ = 2449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{2449}}{2*45}=\frac{17-\sqrt{2449}}{90} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{2449}}{2*45}=\frac{17+\sqrt{2449}}{90} $
| 28=3y+27 | | b^2+5b+6=6 | | -4(-7y+6)-7y=5(y-7)-7 | | 4(y-1)=4y+2-2(-6y-5) | | 25x^2-51x+49=0 | | 5(1+3k)+12(8k+5)=65 | | 9=5y=6 | | -3(5w-9)+8w=5(w+9) | | -2x+8=×-7 | | 4p2-4p-15=0 | | -8+4a=3a-4 | | 6v-1+3(2v+5)=-2(v+1) | | 2(-12+2)=6x+9 | | 8q-6q+3q=20 | | 7(u-1)-7=-5(-5u+6)-8u | | 2(x+2)+5=10 | | A-a+5a-3=2 | | 8r+2r+r-8r-2r=11 | | 5g+5g-g=18 | | 5j+4j+3j-8j+4j=8 | | 2t-2t+4t-2t=12 | | 4d-d=18 | | b+3=-0.6 | | 9p-8p=12 | | 2h-h=11 | | 3x²-12x+5=0 | | 10000^x=10 | | -5d2-12d+4=0 | | x-2/2x-1=2 | | x+1/2=x-2 | | (2x+1)(2x+1)-(2x)(x)=0 | | 6-11r=-8-13r |