If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p^2-4p-15=0
a = 4; b = -4; c = -15;
Δ = b2-4ac
Δ = -42-4·4·(-15)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-16}{2*4}=\frac{-12}{8} =-1+1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+16}{2*4}=\frac{20}{8} =2+1/2 $
| -8+4a=3a-4 | | 6v-1+3(2v+5)=-2(v+1) | | 2(-12+2)=6x+9 | | 8q-6q+3q=20 | | 7(u-1)-7=-5(-5u+6)-8u | | 2(x+2)+5=10 | | A-a+5a-3=2 | | 8r+2r+r-8r-2r=11 | | 5g+5g-g=18 | | 5j+4j+3j-8j+4j=8 | | 2t-2t+4t-2t=12 | | 4d-d=18 | | b+3=-0.6 | | 9p-8p=12 | | 2h-h=11 | | 3x²-12x+5=0 | | 10000^x=10 | | -5d2-12d+4=0 | | x-2/2x-1=2 | | x+1/2=x-2 | | (2x+1)(2x+1)-(2x)(x)=0 | | 6-11r=-8-13r | | -2r=-3r-19 | | X+1/2x=180 | | X+1/2x=180° | | 4000=x(.20) | | 16n+12=14n-20 | | 16+12=14n-20 | | 4/6=7/6n | | -4p-10=-3p | | 14a=20 | | 11g+20=-2-11g |