If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-50x-8=0
a = 9; b = -50; c = -8;
Δ = b2-4ac
Δ = -502-4·9·(-8)
Δ = 2788
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2788}=\sqrt{4*697}=\sqrt{4}*\sqrt{697}=2\sqrt{697}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{697}}{2*9}=\frac{50-2\sqrt{697}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{697}}{2*9}=\frac{50+2\sqrt{697}}{18} $
| 7x-28=4x-1 | | -5x-14=-8x-17 | | -2j=9-j | | 5(4x-3)=2x-11 | | (9x-1)-(1-4x)=(2x+8)+(9x-10) | | (x+64)+(x+54)=100 | | 6x+35=x+10 | | (-4)/(7)k=-28 | | 5q+6=9+6q | | 9xA-18=18 | | 8x-2=19x-13 | | 10*2^n-1=0 | | 9a-6=4a+24 | | 3x+4=1/2x-2 | | 4(2x-5)=4(x-3) | | -4r+10=5-14r | | 6x+4-8=16+4x | | 3(4-7v)-v=-36-6v | | -5(x+3)=x+21 | | 10+7a=5a+6 | | 12+x=65 | | 69=9b=38 | | 8x–23=33 | | 2-3a=6+5a | | 2x-14+3x-13=28 | | 3-24b=7 | | 4-5x=-5x+9-5 | | -6/5x-3/32x+1/5x=-52 | | 3(x-4)/8+7=9 | | 9+f=4(f-9) | | 8*(2x-3)-6=4x+30 | | -6(-7-8k)=-7(k-6) |