If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6/5x-3/32x+1/5x=-52
We move all terms to the left:
-6/5x-3/32x+1/5x-(-52)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 32x!=0We add all the numbers together, and all the variables
x!=0/32
x!=0
x∈R
-6/5x-3/32x+1/5x+52=0
We calculate fractions
(32x-6)/160x^2+(-15x)/160x^2+52=0
We multiply all the terms by the denominator
(32x-6)+(-15x)+52*160x^2=0
Wy multiply elements
8320x^2+(32x-6)+(-15x)=0
We get rid of parentheses
8320x^2+32x-15x-6=0
We add all the numbers together, and all the variables
8320x^2+17x-6=0
a = 8320; b = 17; c = -6;
Δ = b2-4ac
Δ = 172-4·8320·(-6)
Δ = 199969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{199969}=\sqrt{49*4081}=\sqrt{49}*\sqrt{4081}=7\sqrt{4081}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-7\sqrt{4081}}{2*8320}=\frac{-17-7\sqrt{4081}}{16640} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+7\sqrt{4081}}{2*8320}=\frac{-17+7\sqrt{4081}}{16640} $
| 3(x-4)/8+7=9 | | 9+f=4(f-9) | | 8*(2x-3)-6=4x+30 | | -6(-7-8k)=-7(k-6) | | -17–2x=6–x | | 11x=325 | | b+6=87 | | 0.5(y-10)=8 | | (2*x+40)+(x-4)=180 | | -4(2i-2)=8(i+3) | | (2*x+40)+(x-5)=180 | | 9-6x=18-3x | | 2.5x-0.5x=1.5x+3 | | 8x-3+4x+9=x | | -8-10c=-9c | | 2x-50=3x-74 | | 6a=2a=-36 | | 8y-9=41 | | 17+2b=5(b-2) | | –4=–2(c−5) | | 5(p-5)-15=20 | | -64-9x=-72-x | | p+25=92 | | 6x–x^2-9=0 | | 3+g+5/2=2g-2 | | 7+10c=3+4c | | 10+4s=-3+8+3s | | 4(n+8)=8(n+6) | | 6y+18=4(y-2) | | 8x+99=180 | | 6x-24=12-3x | | 11+e=2(e+3) |