If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9.3/x=(3-x)/2.7
We move all terms to the left:
9.3/x-((3-x)/2.7)=0
Domain of the equation: x!=0We add all the numbers together, and all the variables
x∈R
9.3/x-((-1x+3)/2.7)=0
We calculate fractions
()/2x^2+(-((-1x+3)*x)/2x^2=0
We multiply all the terms by the denominator
(-((-1x+3)*x)+()=0
We calculate terms in parentheses: +(-((-1x+3)*x)+(), so:We get rid of parentheses
-((-1x+3)*x)+(
We add all the numbers together, and all the variables
-((-1x+3)*x)
We calculate terms in parentheses: -((-1x+3)*x), so:We get rid of parentheses
(-1x+3)*x
We multiply parentheses
-1x^2+3x
Back to the equation:
-(-1x^2+3x)
1x^2-3x
We add all the numbers together, and all the variables
x^2-3x
Back to the equation:
+(x^2-3x)
x^2-3x=0
a = 1; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*1}=\frac{6}{2} =3 $
| t^2+12t-12=0 | | 2x+8/3=26-x | | 4x2x=5 | | 3(x-5)=7(2x+3)-4(x-2)-5(x-2)+2 | | 3(x-5)=7(2x+3)-4(x-2)-5(x-2)= | | 3(x-2)-(x-1)=7(x-1)-6(x-2) | | 3x=27x+-9 | | 3x=27x+9 | | 2x+(1/x)=-5 | | 2s-54=-1s+21 | | 8/a^2-25-2/a-5=1/2a+10 | | -11x+2x/3+3=5-2(x/3+1) | | a-8=54 | | I2x-3I+I4x-6I=9 | | 38=a+(-15) | | 4x+2x=154 | | 0.67x=1000000 | | .67x=1.000.000 | | 100x=38 | | 2(2-m)=2 | | 3m+4/4=2m+1/3 | | 100x=126 | | 100x=20.8 | | 6.87x2=135-45x2 | | 11x+20=20x+20 | | 4x+5=10x-5 | | -1=-x(5x+3) | | 10x-5=30x-3 | | 10x-5=20x-3 | | 7x+6=2x+-4 | | x^2+400x-9600=0 | | A+c=4 |