If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x*7x-840=0
Wy multiply elements
49x^2-840=0
a = 49; b = 0; c = -840;
Δ = b2-4ac
Δ = 02-4·49·(-840)
Δ = 164640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164640}=\sqrt{784*210}=\sqrt{784}*\sqrt{210}=28\sqrt{210}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{210}}{2*49}=\frac{0-28\sqrt{210}}{98} =-\frac{28\sqrt{210}}{98} =-\frac{2\sqrt{210}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{210}}{2*49}=\frac{0+28\sqrt{210}}{98} =\frac{28\sqrt{210}}{98} =\frac{2\sqrt{210}}{7} $
| 12x-8=52 | | 4w/1=-9 | | 6x²+5x-4=0 | | 14/m+6=8 | | 7a+16+-3a=-4 | | 9(x+1)=9x-8 | | 5+4x=2x+33 | | x(x−16)=0 | | (x+10)(x−3)=0 | | 1=2s | | (8/5)k+-(7/9)=2-(-7/2)k | | 4/y+2=3/y-2 | | 6y-(3-y)=11 | | 8=5k | | 7m+3-4=-9 | | 50=-k10 | | 200+.15x=293 | | (2x+5)x=42 | | -12.11x-10.5=7.56+35x | | 3v=7 | | 10(n)=2n | | t=-4.9t^2+20t+10 | | 9+r=20 | | -2y+6(4y-9)=-3+5(5-y) | | 10a-3=2(4a+510a) | | -19+x=x+15 | | (3m+2)=(m-1) | | (x-8)^2-144=0 | | 2(4-9)+5m=6 | | 3w-12=7w-16 | | 13+6(x-3)=25 | | 3x^-21=0 |