If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+5)x=42
We move all terms to the left:
(2x+5)x-(42)=0
We multiply parentheses
2x^2+5x-42=0
a = 2; b = 5; c = -42;
Δ = b2-4ac
Δ = 52-4·2·(-42)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-19}{2*2}=\frac{-24}{4} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+19}{2*2}=\frac{14}{4} =3+1/2 $
| -12.11x-10.5=7.56+35x | | 3v=7 | | 10(n)=2n | | t=-4.9t^2+20t+10 | | 9+r=20 | | -2y+6(4y-9)=-3+5(5-y) | | 10a-3=2(4a+510a) | | -19+x=x+15 | | (3m+2)=(m-1) | | (x-8)^2-144=0 | | 2(4-9)+5m=6 | | 3w-12=7w-16 | | 13+6(x-3)=25 | | 3x^-21=0 | | 2(4-9)+5(4)=6+m | | 5^3x-4=5^x | | 6t+5/6t-5=3t+5/3t-7 | | 5^3x-4=25^x | | 3+30x=15x9 | | (x^2-81)/(x^2+10x)=0 | | 2/3x+6=1/2x1/4+x | | -5(y+5)=-3y-9 | | -5y-1=-4y-6 | | 4/7x=3x | | 54=-3x+40 | | 11^-x+5=13^6x | | 4a-65+2a+10+a-10=180 | | x-3)-2(x+6)=-5 | | 5x-1x-2=10 | | 4x÷6=54 | | 0.13x+0.03(70000-x)=6000 | | 3a+3a-50+4a+10=180 |