If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72=2*22/7r(2)
We move all terms to the left:
72-(2*22/7r(2))=0
Domain of the equation: 7r2)!=0We add all the numbers together, and all the variables
r!=0/1
r!=0
r∈R
-(+2*22/7r2)+72=0
We get rid of parentheses
-2*22/7r2+72=0
We multiply all the terms by the denominator
72*7r2-2*22=0
We add all the numbers together, and all the variables
72*7r2-44=0
Wy multiply elements
504r^2-44=0
a = 504; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·504·(-44)
Δ = 88704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88704}=\sqrt{576*154}=\sqrt{576}*\sqrt{154}=24\sqrt{154}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{154}}{2*504}=\frac{0-24\sqrt{154}}{1008} =-\frac{24\sqrt{154}}{1008} =-\frac{\sqrt{154}}{42} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{154}}{2*504}=\frac{0+24\sqrt{154}}{1008} =\frac{24\sqrt{154}}{1008} =\frac{\sqrt{154}}{42} $
| X-(x/100x25)=12570 | | 6x-3=7x+16 | | 3x-10x=3-13 | | 6x^2+7x^2-20=0 | | -44b=-116 | | f/8=-33 | | 3x^2-69x+2600=0 | | X^2-2x+1=-8+1 | | 8w+7(w+4)=13 | | -8y+3(y-6)=-28 | | 21+1/5c=25 | | 10s+1=8+125 | | 10(x+1)=2(2x-5) | | 5^(2x-1)=5^x-14 | | 0.20x1000=200 | | 3(5-2r)=-3-9r | | 4x(x-1)=3x+1 | | w=A(3) | | (600-x)/(1000-x)=0.48 | | 3x-7x=x | | 9-5y=4-6y | | 6(-4/3x-4)=10(1/5x-1/2)-6x | | 6(-4/3x-4)=1091/5x-1/2)-6x | | x+12=-3x+60 | | 1+180000x=16209 | | -1/2+3/4w=-5/3 | | -x+21=9 | | -2(w+9)=7w+2 | | x2=93/81 | | -3(2x-4)=3x+4x+1 | | 7x+4x-25=8x-37 | | y=140(0.20)^50 |