x2=93/81

Simple and best practice solution for x2=93/81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2=93/81 equation:



x2=93/81
We move all terms to the left:
x2-(93/81)=0
We add all the numbers together, and all the variables
x2-(+93/81)=0
We add all the numbers together, and all the variables
x^2-(+93/81)=0
We get rid of parentheses
x^2-93/81=0
We multiply all the terms by the denominator
x^2*81-93=0
Wy multiply elements
81x^2-93=0
a = 81; b = 0; c = -93;
Δ = b2-4ac
Δ = 02-4·81·(-93)
Δ = 30132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{30132}=\sqrt{324*93}=\sqrt{324}*\sqrt{93}=18\sqrt{93}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{93}}{2*81}=\frac{0-18\sqrt{93}}{162} =-\frac{18\sqrt{93}}{162} =-\frac{\sqrt{93}}{9} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{93}}{2*81}=\frac{0+18\sqrt{93}}{162} =\frac{18\sqrt{93}}{162} =\frac{\sqrt{93}}{9} $

See similar equations:

| -3(2x-4)=3x+4x+1 | | 7x+4x-25=8x-37 | | y=140(0.20)^50 | | 7x+4+11x=180 | | 10.2=1/x | | (3/x-5)=(-7/x+5) | | a-18/7=-7 | | X9-2x=38 | | 17v=81+8v | | 4x+51=5x+48 | | 1/2d=-58 | | 35+y=-40 | | 7x-32=3x+40 | | 3m-8=-15 | | -3=r-9 | | 7x+34=189 | | x-5+151=180 | | x-8+107=180 | | 2(x-4)+1=4(x-5) | | x+3+35=180 | | 4(5x-5)=20x-16 | | .75x+3=6(x-3 | | 8(+2a)=-104 | | 8(1+2a=-104 | | -1=5/3-16d | | -49y=63 | | -49x=63 | | 91=21x | | 3/2x=1/9 | | 3(3y+3y)=12 | | 140/100=42/x | | -3y-10=73 |

Equations solver categories