If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2-7w-10=0
a = 6; b = -7; c = -10;
Δ = b2-4ac
Δ = -72-4·6·(-10)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-17}{2*6}=\frac{-10}{12} =-5/6 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+17}{2*6}=\frac{24}{12} =2 $
| 8x-4(3x+1)=4 | | -14z+18=-20+5z | | b-1,3/4=4,1/4 | | n(n-1)/2=2926 | | 14s-3=13s+17+2s | | 24y2+19y+2=0 | | -16=8-2x | | 2s=-8+3s | | 7n-3=7+9n-2 | | -7-5=7x+5-6 | | 8y2+10y-3=0 | | -8m=2-9m | | 180-(6x-7)+(103-x)+2x=180 | | 8+7x-×^2=0 | | 8-4k=-2k-6 | | 5-(x-2)+3x=10x-3(4x-5) | | 7x2+8x+1=0 | | 8-4k=2k-6 | | 4-2x/2=16 | | -2v=3v+10 | | 4-3n=-14 | | 10-2f=-3f+9 | | 9+8q=9q+1 | | Y+10=2y-15 | | 6w2-11w-10=0 | | -7x=-2+5x+×5 | | 3y2+10y-8=0 | | −0.3y+4.2=6.6 | | 2x+60=17x | | .5(12z-2)=5z-7 | | −4u−15=11 | | s•7/8=-10 |