If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+8x+1=0
a = 7; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·7·1
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-6}{2*7}=\frac{-14}{14} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+6}{2*7}=\frac{-2}{14} =-1/7 $
| 8-4k=2k-6 | | 4-2x/2=16 | | -2v=3v+10 | | 4-3n=-14 | | 10-2f=-3f+9 | | 9+8q=9q+1 | | Y+10=2y-15 | | 6w2-11w-10=0 | | -7x=-2+5x+×5 | | 3y2+10y-8=0 | | −0.3y+4.2=6.6 | | 2x+60=17x | | .5(12z-2)=5z-7 | | −4u−15=11 | | s•7/8=-10 | | −7w−18=0 | | n(n-3)/2=741 | | y4=3y4=3 | | 13-3f=7 | | 5x-(x-8)=9=3(2x-3) | | −8=6w−20 | | 3+2(3x-4-2x+1-x+3)=x | | 12x+6=2(3+6x | | y″+9y′+20y=0 | | .3(9x+3)=2x-5 | | 8/15x=-16 | | 5(y+3)-11=-y-6 | | 4/n=28/35 | | 6x+5-2x=8+x | | 2y2+7y-15=0 | | 2(x+10)+3x=200 | | 2x+36-4x=-2x-14+50 |