If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2-11w-10=0
a = 6; b = -11; c = -10;
Δ = b2-4ac
Δ = -112-4·6·(-10)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-19}{2*6}=\frac{-8}{12} =-2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+19}{2*6}=\frac{30}{12} =2+1/2 $
| -7x=-2+5x+×5 | | 3y2+10y-8=0 | | −0.3y+4.2=6.6 | | 2x+60=17x | | .5(12z-2)=5z-7 | | −4u−15=11 | | s•7/8=-10 | | −7w−18=0 | | n(n-3)/2=741 | | y4=3y4=3 | | 13-3f=7 | | 5x-(x-8)=9=3(2x-3) | | −8=6w−20 | | 3+2(3x-4-2x+1-x+3)=x | | 12x+6=2(3+6x | | y″+9y′+20y=0 | | .3(9x+3)=2x-5 | | 8/15x=-16 | | 5(y+3)-11=-y-6 | | 4/n=28/35 | | 6x+5-2x=8+x | | 2y2+7y-15=0 | | 2(x+10)+3x=200 | | 2x+36-4x=-2x-14+50 | | 20/(x-3)=5 | | 2(a-3)=6a+4 | | 1/2z+2/3=1/3z-3/2 | | 7(9c-1)-4=61c+7 | | 11z–5=9z+7 | | 9(4y-6)=2(-13-2y) | | X+50+x+10+x+-30=180 | | 1/2(x-4)-7=-2x+6 |