If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-18x+9=0
a = 5; b = -18; c = +9;
Δ = b2-4ac
Δ = -182-4·5·9
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-12}{2*5}=\frac{6}{10} =3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+12}{2*5}=\frac{30}{10} =3 $
| 4-(3w+4)=-8w+3 | | x+√x+1=5 | | 100=10^x | | 11x=24+x^2 | | 2^(4x)=16 | | (28+2x)(10+2x)=1144 | | x+√(x+1)=5 | | 3x-17=-x-17 | | (4x-16)+68=180 | | 2/n-6+1/n+2=3/n^2-4n-12 | | x=10x^2+60x-10 | | x-5=25×4+3×2 | | 9x^2+138x+529=0 | | 3n+3n=8-2n | | 7-2x=2x+10 | | 18+2n=-5(2-6n) | | 3x/2+x/2+x=90 | | 6n=5(2n+4) | | 9w+8-2w=4w | | |-5x|+4=-11 | | 5/x-3+1/x=5/x-3 | | 6-4n=-10(9-n)+2n | | 4=(1/2^x) | | 13y2=32y-12 | | 2x(4x+11)=-15 | | 39-7n=4(5n+3) | | 2x-4=96 | | 9(x+4)=4(3x+9)−3x | | 3(2x-4)=6+6x-18 | | 7(x+4)=2(3x+14)+x | | 3(2x-4)=6+6-18 | | 3x+19=2x+8 |