If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-10x-40=0
a = 5; b = -10; c = -40;
Δ = b2-4ac
Δ = -102-4·5·(-40)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-30}{2*5}=\frac{-20}{10} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+30}{2*5}=\frac{40}{10} =4 $
| y-4-20=-12 | | 7=1-5p+6 | | -3(x-4)-(-3x+1)=2x-2x | | 2b2-8=0 | | 12x2-16x=16 | | -4y-4=-12 | | -2x+41=3x+6 | | -10v+9=-4-7v | | n2-11n-12=0 | | b/5+4/5=7/4 | | n2+4n-96=0 | | 3c-7=56 | | 5-2x-4=3x-12 | | 0.99t+72=1.79t | | -2/3x+5=-x+7 | | 2+4/x=7/12x | | 2x-4=2x-2x | | 3x+4+8x−28=180 | | 0.99t72=1.79t | | 3=p-3+4 | | 10-x=0.04-0.444 | | 7p-5=-7p+9 | | 7p–5=-7p+9 | | 5x=1/3x+10 | | 5x=1/3+10 | | 1.5(b+6)+9=5 | | 16x+3x=13 | | x8+14=3 | | 5/x+2/2x=6 | | 0=q^2-25q-100 | | 5-2x-4=3x-1 | | 4+3(x+1)=5+4(x+1) |