If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2b^2-8=0
a = 2; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·2·(-8)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*2}=\frac{-8}{4} =-2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*2}=\frac{8}{4} =2 $
| 12x2-16x=16 | | -4y-4=-12 | | -2x+41=3x+6 | | -10v+9=-4-7v | | n2-11n-12=0 | | b/5+4/5=7/4 | | n2+4n-96=0 | | 3c-7=56 | | 5-2x-4=3x-12 | | 0.99t+72=1.79t | | -2/3x+5=-x+7 | | 2+4/x=7/12x | | 2x-4=2x-2x | | 3x+4+8x−28=180 | | 0.99t72=1.79t | | 3=p-3+4 | | 10-x=0.04-0.444 | | 7p-5=-7p+9 | | 7p–5=-7p+9 | | 5x=1/3x+10 | | 5x=1/3+10 | | 1.5(b+6)+9=5 | | 16x+3x=13 | | x8+14=3 | | 5/x+2/2x=6 | | 0=q^2-25q-100 | | 5-2x-4=3x-1 | | 4+3(x+1)=5+4(x+1) | | 2(3t+1)-5=t-(+2) | | 2r+7(1-3r)=-7r+19 | | 326.08=220+0.51x | | 2/9x+11=4/9x-1 |