If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+3x-2=0
a = 5; b = 3; c = -2;
Δ = b2-4ac
Δ = 32-4·5·(-2)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*5}=\frac{-10}{10} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*5}=\frac{4}{10} =2/5 $
| 5(4y +5)=65 | | 5(4x +5)=65 | | (x/7)+7=0 | | (z/9)-8=6 | | (t/5)-7=15 | | (a/6)+4=16 | | x-0.2x=17250 | | x+(10x/100)=5 | | 6f-40=0 | | 8f-11=2f+29 | | 4s3+15s3+16s+6=0 | | 5x^-4x-11.25=0 | | 3x-x=17 | | 2x-15=6x+2 | | F(x)=7^2+5x+1 | | 0=10+0.5p | | 15x+27=132 | | a+3=30 | | 10=a+(0.5)(40) | | 4(2x-2)=3(5x+8)+3 | | 6(5-8x)+12=54 | | 3(5c-4)-2=4(3c+7) | | 2(3a-8)-2(2a+7)=0 | | (N+1)(n)/(n-1)=132 | | 2(3y+5)-2(4y-5)=0 | | 5x-7(2-x)=34 | | x+5(x-4)=16 | | 1m+7=13 | | (2x-3)-(5-4x)=10 | | 10a=3(3a-4)+15 | | 5x-16=2x+10 | | x²-3x=108 |