50=3x(20-x)2

Simple and best practice solution for 50=3x(20-x)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50=3x(20-x)2 equation:



50=3x(20-x)2
We move all terms to the left:
50-(3x(20-x)2)=0
We add all the numbers together, and all the variables
-(3x(-1x+20)2)+50=0
We calculate terms in parentheses: -(3x(-1x+20)2), so:
3x(-1x+20)2
We multiply parentheses
-6x^2+120x
Back to the equation:
-(-6x^2+120x)
We get rid of parentheses
6x^2-120x+50=0
a = 6; b = -120; c = +50;
Δ = b2-4ac
Δ = -1202-4·6·50
Δ = 13200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13200}=\sqrt{400*33}=\sqrt{400}*\sqrt{33}=20\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-20\sqrt{33}}{2*6}=\frac{120-20\sqrt{33}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+20\sqrt{33}}{2*6}=\frac{120+20\sqrt{33}}{12} $

See similar equations:

| -8(x-3)=-6(x+1) | | 3w+2/4=12 | | (2x-3)÷(3x+5)=2 | | (3x+5x)x+1=(2x+1)^2 | | (7x-5)²=16 | | 32x+8-15=160 | | 3(w+2)+4w=51 | | (2/5)x+2/3=3 | | z/7+1=6 | | 3/5x-15=1/5x+12 | | 7x-49=3x+60 | | 7x-26=7x-2 | | 10x-4=12x+14 | | (3x+5)^2-(2x-7)^2=24(2x-1) | | y=3/5*12+26 | | 115=x/216*100 | | 4x+7=2x–3 | | m-1+2m^2=0 | | (10x+3)/(2x-1)=2 | | (8-3x)(5x+2)=4x(11-4x) | | 5x/2-3=2x+5 | | 25x+15=30x-10 | | (X-90)+(x-90)+80=180 | | 2/3/x=6 | | X+(x-35)+3X=180° | | 2^n=92 | | 4(3x–5)–13=7x-3 | | 3(2x-12)=180 | | X+(x-35)+3X=180 | | X+(+-35)+3x=180 | | 2/3(p+3)=1/4(p-3) | | 6(2x–1)–10=2(5x–1) |

Equations solver categories