If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/5)x+2/3=3
We move all terms to the left:
(2/5)x+2/3-(3)=0
Domain of the equation: 5)x!=0determiningTheFunctionDomain (2/5)x-3+2/3=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/5)x-3+2/3=0
We multiply parentheses
2x^2-3+2/3=0
We multiply all the terms by the denominator
2x^2*3+2-3*3=0
We add all the numbers together, and all the variables
2x^2*3-7=0
Wy multiply elements
6x^2-7=0
a = 6; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·6·(-7)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*6}=\frac{0-2\sqrt{42}}{12} =-\frac{2\sqrt{42}}{12} =-\frac{\sqrt{42}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*6}=\frac{0+2\sqrt{42}}{12} =\frac{2\sqrt{42}}{12} =\frac{\sqrt{42}}{6} $
| z/7+1=6 | | 3/5x-15=1/5x+12 | | 7x-49=3x+60 | | 7x-26=7x-2 | | 10x-4=12x+14 | | (3x+5)^2-(2x-7)^2=24(2x-1) | | y=3/5*12+26 | | 115=x/216*100 | | 4x+7=2x–3 | | m-1+2m^2=0 | | (10x+3)/(2x-1)=2 | | (8-3x)(5x+2)=4x(11-4x) | | 5x/2-3=2x+5 | | 25x+15=30x-10 | | (X-90)+(x-90)+80=180 | | 2/3/x=6 | | X+(x-35)+3X=180° | | 2^n=92 | | 4(3x–5)–13=7x-3 | | 3(2x-12)=180 | | X+(x-35)+3X=180 | | X+(+-35)+3x=180 | | 2/3(p+3)=1/4(p-3) | | 6(2x–1)–10=2(5x–1) | | 5(4x+2)-6=3(4x+4 | | 5(4x+2)–6=3(4x+4) | | X+36=86-x | | 2x+(4x+30)+(2x+70)=180 | | 2y/3y+2=-2/3 | | 2x+3000=6x | | 2x+(4×+30)+(2×+70)=180 | | 100x²+482x-45=0 |